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As the article [1] already describes the approach in a rigorous way, this text mainly aims

at facilitating its comprehension, insisting on its beauty and encouraging the use of such

techniques for future works.

Illustrations

The beautiful illustrations that you will see in this text comes from Keenan Crane’s intro-

ductory course on discrete differential geometry [2] and from Albert Chern and Stephanie

Wang SIGGRAPH course about discrete exterior calculus [3].

1 A quick primer on differential forms and their interest

in differential geometry

Key idea 1. Differential forms and the operators that acts on them allow us to

express, in a single framework, all of vector calculus concepts in a way agnostic of

dimension and coordinate systems. Such tools are of great use in the context of

differential geometry (and physics !) since they allow to capture the variations of

infinitesimal geometric elements (k-vectors) while simplifying notations. It is very

important to keep in mind that, from a numerical point of view, every computation

boils down to standard vector operators.

1.1 k-vectors

One could define what differential approaches are by saying that it is the use of derivatives

to compute local polynomial approximations of a possibly complex object, for instance

a surface. If you had to compute the area of a manifold, one natural idea would be to

approximate your surface by a collection of small parallelograms that will fit the surface

when the resolution tends to zero, and to sum up the area of each element to approximate

the surface area.

Figure 1: A collection of 2-vectors approximating a surface

Then, to give an orientation to the surface, we would like to be able to define oriented

parallelograms. That is precisely what k-vectors are. To make things more precise, we

define k-vectors by ”gluing” together k elemental vectors using the wedge product, which is

a multilinear and alternating operator :

u ∧ v = −v ∧ u
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Definition 1. A k-vector v ∈
∧k

V is an object that can be decomposed as a linear

sum of simple k-vectors of the form:

v = v1 ∧ · · · ∧ vn, where vk ∈ V

which in turn can be decomposed in the k-vector basis.

For instance, in R3, following from the multilinear and alternating property of ∧, we
have :1

2

3

 ∧

4

5

6

 = (2× 6− 3× 5)e2 ∧ e3 + (1× 6− 3× 4)e1 ∧ e3 + (1× 5− 2× 4)e1 ∧ e2

1.2 k-forms

To be able tomeasure those elements, we need to define dual objects that compute quantities

from k-vectors, namely k-forms. In the same way, k-forms are formed by gluing elements of

the dual basis, defined as : dxi(ej) = δij .

Proposition 1.1. From the alternating property of the wedge product, it can easily

be shown that the basis of k-forms in Rn has a size of
(
n
k

)
. In R3 :

0-forms : 1

1-forms : dx, dy, dz

2-forms : dx ∧ dy, dx ∧ dz, dy ∧ dz

3-forms : dx ∧ dy ∧ dz
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Key idea 2. One very handy computation rule and important fact is that one should

see k-forms as machines that compute determinants from projected vectors, indeed,

since we saw that k-forms are linear and alternating, one can show that they must

be multiple of the usual determinant ! To compute the value of a k-form applied to

k vectors (or a k-vector), one can apply the following rule

dxi1 ∧ . . . dxik(x1, . . . , xk) = det(Πi1,...,ik(x1, . . . , xk))

Where Πi1,...,in is the orthogonal projection over the coordinates i1, . . . , in.

For example :

dx ∧ dz


1

2

3

 ,

4

5

6


 = 1× 6− 3× 4 (1)

1.3 Differential k-forms

Definition 2. A differential k-form is a smooth field of k-forms.

We will denote the set of differential k-forms over M as Ωk(M).

Key idea 3. In R3, since the dimension of the basis of k-forms is 1,3,3,1, it is very

common to represent them using scalar fields for 0 and 3 forms or a 3D vector fields

for 1 and 2 forms, for instance :

(v)1−form(x) = v1(x)dx+ v2(x)dy + v3(x)dz

(f)3−form(x) = f(x)dx ∧ dy ∧ dz

Key idea 4. One should see differential k-forms as fields of objects of codimension

k ((n− k)-vectors). Indeed, from the multilinear-alternating property of k-forms, in

Rn, one can prove that a k-form can always be computed as the determinant of an

n× n matrix :

ω(x1 ∧ · · · ∧ xk) =

∣∣∣∣∣∣∣
 | | | |
α1 . . . αn−k x1 . . . xk

| | | |


∣∣∣∣∣∣∣

where the αi ∈ Rn are induced by the coefficients of ω and correspond to a basis of

Ker(ω). For example, evaluating the 2-form : (cdx∧dy+bdx∧dz+ady∧dz)(x1,x2)

is equivalent to computing det((a, b, c)t,x1,x2), hence one can represent the 2-form

by the vector field (a, b, c)t. Note that one can also see differential k-forms as fields of

k-vectors but this interpretation does not interacts as well with the other operators,

for more details see [3].
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1.4 Operators on differential forms

1.4.1 Musical isomorphisms ♯, ♭

A very handy operator is v♭ = (v)1−form and its inverse ((v)1−form)
♯ = v. They exploit the

isomorphism between vector fields and 1-forms.

Note that one can see 1-forms as a field of (n−1)-vectors in accordance with Key idea4, or

as a standard smooth vector field. Note that these two points of view are not contradictory

since one can see a scalar product with a vector v as a determinant with an adequate basis

of v⊥.

1.4.2 Hodge Star

The Hodge star is also an operator that simplifies notations. Since
(
n
k

)
=

(
n

n−k

)
, we can

associate with each k-form an (n−k)-form , for a orthonormal direct basis of Rn (e1, . . . , en):

⋆(e1 ∧ · · · ∧ ek) = ek+1 ∧ · · · ∧ en

and ⋆ ⋆ η = (−1)k(n−k)η. For instance : ⋆1 = dx ∧ dy ∧ dz and ⋆dx = dy ∧ dz.

The combination of the previous operators allows to build differential forms from vector

fields : if f is a smooth scalar function and v a smooth 3D vector field :

If f is a smooth scalar function and v a smooth vector field

(f)0−form = f

(v)1−form = v♭

(v)2−form = ⋆(v♭)

(f)3−form = ⋆f

1.4.3 Exterior derivative d

As already mentioned, the interest of differential forms is that they unify all of vector

calculus in a single language. The exterior derivative is what allows to recover all formulas

that involve curl,div, gradients, etc...

The exterior derivative d is defined as follows:
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Definition 3. For a differential k-form ω(x) =
∑k

i fi(x)dx
i1 ∧ · · · ∧ dxik , we define:

dω(x) =
∑
i

fi(x)

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik (2)

One should notice that d raises the degree of a k-form by one.

It has a lot of important properties, maybe the most important one is :

Proposition 1.2. d2 = d ◦ d = 0

As promised, in R3 we can recover all standard operators :

d((f)0−form)(x) = (∇f)1−form(x)

d((v)1−form)(x) = (∇× v)2−form(x)

d((v)2−form)(x) = (∇ · v)3−form(x)

Note that from the property d2 = 0, we directly obtain that curl(∇f) = 0 and div(curl(v)) =

0.

Let us try to define the laplacian on 0-forms : since ∆f = div(∇f), we can get the

gradient using df , which is then a 1-form, then to obtain the divergence of the gradient,

we first use the Hodge star to obtain a 2-form, ⋆df , then applying d once again yields

(∇ · ∇f)3−form. Finally we apply the Hodge star to recover a 0-form 1:

⋆d ⋆ df = ∆f.

Since ⋆d⋆ appears often, it is named the codifferential operator δ = ⋆d⋆.

Another important aspect is the link between d and the boundary operator. Such con-

nection comes primarily from the amazing Stokes Theorem:

Theorem 1.3. Stokes Theorem ∫
M

dω =

∫
∂M

ω

.

The elegance and the power of such statement is in itself enough to justify studying

the theory of differential forms. It leads easily to some of the most important vector-

analysis theorems: the fundamental theorem of analysis, Green-Ostrogradski formula, Gauss

divergence theorem, etc...

1For any differential form, the laplacian is defined as: ∆ = δd+ dδ

7



Figure 2: The exterior derivative corresponds to the boundary operator on the orthogonal
representation

2 Currents

Even though the article does not explicitly use the term of currents, the authors define such

object as a limit of a sequence of differential forms whose value tend to infinity on a set and

to zero everywhere else. This of course reminds of the definition of the Dirac δ distribution,

which is relevant since currents are to differential forms what distributions are to

C∞
c functions.

The set of currents is defined as the dual of the set of differentials forms, namely :

Key idea 5. Currents represent any kind of objects you can integrate a differential

form on. For instance manifolds.

One might ponder, if currents are used to represent manifolds, why not directly han-

dling manifolds ? It turns out that the answer is the same as for distributions : this dual

formulation allows a variational approach to the problem which is highly relevant here since

the manifold itself is the unknown.

Key idea 6. In this article, in a way similar to phase fields, the target manifold is

approached as a limit of smooth differential forms on R3 whose support tends to Σ

and whose value tends to the normal field n♭
Σ.

3 Minimal surfaces

A minimal surface is a solution of the following problem :

min
Σ:∂Σ=Γ

Area(Σ) (3)

Which provides a mathematical formulation for soap films.

The starting point of expressing minimal surfaces as an optimization problem over dual

objects comes from this expression:

Area(Σ) =

∫
Σ

1dA =

∫
Σ

||n(x)||2dA = sup
v:Σ 7→R3,|v|≤1

∫
Σ

v(x) · n(x)dA (4)

8



Figure 3: Given a boundary Γ, we aim at computing the surface with minimal area such
that ∂Σ = Γ

Such rewriting expresses the area as a maximization problem where the solution is the

normal field of the surface. 2

One natural way to see the connection with currents is that one might recognize a dual

norm, i.e., if (X, ||.||) is a normed vector space (here smooth vector fields or, equivalently,

Ω1(R3) by the isomorphism v = ω♯), the dual norm on X∗ is, for f ∈ X∗ :

||f || = sup
x∈X,||x||≤1

|f(x)|.

Useful analogy 1. One should recognize a generalization of standard matrix norms.

In our context, where the dual space is the one of currents, f is here δΣ:

⟨ω, δΣ⟩ =
∫
R3

ω ∧ δΣ =

∫
Σ

ωdS (5)

Note that in the context of currents, the dual norm is called the mass norm, noted

||.||mass

Useful analogy 2. This expression exhibits the analogy with Dirac distributions

where the duality bracket is defined as the integral over the support of the Dirac but

here with the additional normal information carried by the current.

Which leads to the key equality of the approach:

Area(Σ) = ||δΣ||mass (6)

2this article’s approach can be summed up as : finding the normal field of the unknown surface where
the variable of optimization is a smooth vector field defined over [0, 1]3
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Key idea 7. This equality illustrates the link between measure theory and geometry

and motivates the interest of the field of geometric measure theory (for a compre-

hensive introduction, see [4]).

4 The article’s approach

4.1 Shape representation and discretization

As previously mentioned, we aim at computing the surface that minimizes the Area func-

tionnal :

min
Σ:∂Σ=Γ

Area(Σ) (7)

But of course, this is the continuous problem that cannot be solved exactly nor will fit into

a computer, so one must discretize the shape, hence asking a fascinating question : How to

represent a shape in a computer?

Of course there are many possible answers but one can split them into 2 major families

• Explicit : Describing the shape by a finite subset, possibly specifying topological

information. examples : Mesh, Point cloud, Templates3

• Implicit : Describing the shape by providing a way to query various requests about

its geometry, such as : ”Is the point x in the shape?”, ”At what (signed) distance is

the point x from the shape ?”. examples : Signed distance fields (CSG), Phase fields,

level sets

From a computational perspective, when dealing with surfaces in R3, computing on an

explicit representation of a shape, for instance a mesh, has a complexity of the order of n2

where n is the resolution of the discretization. But, meshes are famously un-adapted to

topological changes, which is very common in the context of shape optimization problems,

such as this one.

On the other hand, implicit representations can handle topological changes without any

trouble, but the computations on implicit representation comes with a cost of the order of

n3, which is often unsatisfactory to get both precision and speed.

For example, solving a linear system for a function discretized on such grid involves

classically O(n6) operations4, while solving it on a mesh would result in O(n4) operations.

To speed up computations, this article uses the FFT. For operators that have a nice

form in the Fourier domain, such as the Laplacian, where the solution can be expressed

as a component-wise product5 with a known kernel in the Fourier domain, we get an

O(n3 log(n3)) = O(n3 log(n)) complexity. Very importantly, using the FFT implies many

interesting questions, covered in section4.3.

As already mentioned, explicit representations would not fit here, and the main interest

of the article is to provide an effective way to represent shapes by currents. One might ask,

why using a current and not another way?

3for a very clear introduction, I recommend [5]
4since we have n3 variables and best linear solvers have a v2 complexity of the number of variables v
5hence requiring O(n3) operations on a grid, which makes it negligible in front of the cost of computing

the FFT on the grid and its inverse.
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Key idea 8. First, the fact that the area of a surface is equal to the mass norm of the

associated current will be helpful, but most importantly, as described in section 1.3,

using the exterior derivative, one can translate topological constraints into differential

ones ! (which is easier to discretize !)

Indeed, using Stokes’ theorem : we have

⟨η, δΣ⟩ =
∫
∂Σ

η =

∫
Σ

dη = ⟨dη, δ∂Σ⟩

This implies that we will be able to impose that our surface has the given boundary

simply by putting

dη = δΓ

4.2 Relaxing the minimization problem

Let us see how can we rewrite the problem (6) to reach something easier to minimize in

practice. We first use the equivalence with the mass norm

min
Σ:dδΣ=δΓ

||δΣ||mass

Of course, working with current directly will not help us since we can’t discretize a shape

we do not know yet. In the founding work of geometric measure theory [6], one main result

is that the problem (6) can be relaxed by saying that the following problem is equivalent :

min
η∈Ω1(M):dη=δΓ

||η||1 (8)

The difference being that the support of the current is only on the unknown surface

whereas a one form is defined on the hole space and can be discretized on a grid.

Useful analogy 3. Minimizing an L1 norm should ring the sparsity bell inside your

head, and rightfully here ! We seek for the 1 form whose support is the smallest as

possible while satisfying the border constraint (valued only on Σ and 0 elsewhere).

Now, we can describe the space our variable lives in with more ease. In particular, the

Helmholtz-Hodge decomposition describes the space of 1-forms in a particularly handy way

for this problem.

4.3 Using the FFT... but at what cost?

In contexts where we have to solve PDEs often, using the FFT allows to extensively reduce

computation costs, but, very interestingly, this has topological consequences. Namely, since

the FFT imposes to work on a periodic domain, the cohomology group of the ambient space

isn’t trivial anymore. What does it mean and imply?
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Figure 4: On a periodic domain, a new family of solution exists that don’t fit the original
problem statement

Helmholtz-Hodge decomposition

Key idea 9. In order to use the FFT, the periodicity of the domain must be handled.

Namely, periodicity adds another unwanted degree of freedom to the solution of our

minimization problem. We aim at fixing this degree of freedom to recover the original

solution while still benefiting of the FFT’s speed up.

Regarding the L2 scalar product6, the set of 1 differential-forms can be written as the

following orthogonal sum:

Theorem 4.1.

Ω1(M) = Im(d0)⊕Ker(d1)⊥ ⊕H1(M) (9)

where H1(M) is the set of harmonic 1 forms on M , i.e., 1 forms ω satisfying, dω = 0

and δω = 0. This group is isomorphic to the cohomology of M , which is the quotient vector

space defined as H1(M) = Ker(d1)/Im(d0). Even though differential forms appears to only

capture local variations and geometry, a very beautiful and deep bridge exists between them

and topological invariants of the spaces they live on. If M = R3, then H1 is trivial, but

since we now work on T 3, H1 is 3-dimensional. That means that the solution now has an

additional degree of freedom that exists only because of a practical choice, which we need

to fix.

Useful analogy 4. To express it in the terms of vector operators, the Helmoltz-

Hodge decomposition simply tells you that any smooth vector vield can be decom-

posed as v = α + β + γ where div(α) = 0, curl(β) = 0 and, if M has a non trivial

topology (else γ = 0), div(γ) = curl(γ) = 0.

The Helmoltz-Hodge decomposition is very helpful here since we can now think about

our solution in terms of each component of the decomposition, namely :

6The scalar product between two k-forms if defined as ⟨α, β⟩ =
∫
M α ∧ ⋆β
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Figure 5: Helmholtz-Hodge decomposition on a periodic domain

• Since we want to impose dη = δΓ, this implies that we fix the component of η in

Ker⊥(d1).

• Since we also want to not use the periodicity of the domain, we want to fix the

component of η in H1(T 3), to do so, we can define a basis of H1(T 3) to be then able

to impose that the coordinates of η in H1(T 3) are the same as of δΣ, so that it respects

our original topological setting :

The most natural basis of H1(T 3) are the canonical basis fields, viewed as 1-forms :

Figure 6: A basis of H1(T 3) = {ex, ey, ez}

We can then compute the coordinates of δΣ in H1(T 3) by taking the dot product with

each basis vector, namely :

for i ∈ {1, 2, 3},

⟨ei, δΣ⟩ =
∫
M

⟨ei, δΣ⟩dx =

∫
Σ

⟨ei, nΣ⟩dS = ⟨ei,
∫
Σ

nΣdS⟩ = Ai (10)
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One can recognize the expression
∫
Σ
nΣdS since it is known as the vector area of a

surface, A⃗(Σ).

One might think, ”But... You fool ! How can we determine A⃗ since we don’t know Σ

?!”. But all hope is not lost ! Actually, one can compute the vector area of a surface

only using its boundary Γ, thanks to the formula :

A⃗(Σ) =

∫
Σ

nΣdS =

∫
Γ

γ × dγ

where Γ = {γ(t), t ∈ [0, 1]}.

Useful analogy 5. A direct discrete analogue of this formula exists, know as

the shoelace formula, as it allows to compute the signed area of any polygon

P = (x1, . . . , xn) only using its boundary:

A⃗(P ) =
∑
i

xi ×
xi+1 − xi−1

2

where × is the usual cross product.

Figure 7: Since the cross product is alternating, the excess of area that is counted twice
cancels out since it is counted once positively and once negatively

• This shows that the only degree of freedom we can’t set directly, and that needs to be

found by this optimization problem, is the Im(d0) part of η.

In conclusion, the problem (8) can be stated on T 3 as :

min
η∈Ω1(T 3):dη=δγ ,⟨ei,η⟩=Ai

||η||1 (11)

Even though this is a correct rewriting of the original problem, using a numerical method

directly on (11) would be painful since the conditions are quite heavy to impose at each

iteration. But since the conditions are orthogonal we can encapsulate them by starting the

minimization from a 1-form that already satisfies these constraints...

14



4.4 Starting from somewhere.

4.4.1 How beautiful life would be with η0

If we had an initial guess η0 that already satisfied conditions (11), adding a 1-form in Im(d0)

would not violate the constraints ! Hence, we can rewrite (11) very neatly as :

min
ϕ∈Ω0(T 3)

||η0 + dϕ||1 (12)

How beautiful !

Finally, since most efficient optimization algorithms require functionals to be convex,

one can pose the following change of variable :

min
X,ϕ:X=Dϕ+η0

||X||1 (13)

In the end, we have a convex problem of two variables under linear constraints, hence we can

use ADMM ! Indeed, ADMM (Alternating Direction Method of Multipliers), first defined in

[7], can be used to solve problems of the form :minu,v f(u) + g(v)

Au+Bv = c

Where f, g are usually convex and A,B are linear operators. Hence here we have f =

||.||1, g = 0, A = I,B = −D, c = η0, where D is a finite difference approximation of the

gradient7. Note that the authors use an accelerated version of the algorithm defined in [8].

4.4.2 Making life beautiful

Let us now try to find a suitable η0. As already mentionned, we wish that η0 ∈ Ω1(T 3)

satisfies :

dη0 = δΓ (14)

∀i ∈ [[1, 3]], ⟨ei, η0⟩ = Ai (15)

When writing equation (14) using the fact that η0 is a 1-form and that d acts on 1-forms

as the curl operator, on can rewrite the condition as :

curl(η0) = δΓ

Where δΓ is interprated as a vector field. Of course, as the Helmholtz-Hodge clearly shows,

the curl operator is not injective (two vector fields that differ only by a curl free field will

have the same curl). Since this problem is under constrained, we would like to define a

pseudo-inverse operator d+. As in the finite dimensional setting, it can be defined here as :

min
η0∈Ω1(M)

||η0||2

s.t. curl(η0) = δΓ

7see section 5 for details about the discretization

15



The solution to that problem is :

(d ⋆ d ⋆+ ⋆ d ⋆ d)ω = (dδ + δd)ω = ∆ω = δΓ

d+δΓ = ⋆d ⋆ ω

Since ω is a 1-form in R3, we can rewrite this more simply as :

curl+(v) = curl(−∆−1v)

where ∆v is the vector Laplacian of v.

One can easily check that this is a pseudo inverse since, if we use the following identity :

curl(curl(v)) = ∇(∇ · v)−∆v

we have here :

curl(curl+(v)) = curl(curl(−∆−1v)) = −∇(∇ ·∆−1v) + ∆∆−1v

= v −∇(∆−1∇ · v)

Hence, if ∇ · v = 0 ⇐⇒ v ∈ Im(curl), we have curl+(v) = v, which proves that is the

appropriate pseudo-inverse operator.

Useful analogy 6. The term ∇∆−1∇ · v is the orthogonal projector on Im(∇),

indeed :

if f = v +∇φ, where ∇ · v = 0, we have :

∇ · f = ∇ · v +∇ · ∇φ = ∆φ

=⇒ ∆−1∇ · f = φ

=⇒ ∇∆−1∇ · f = ∇φ.

From that we can deduce that P = I − ∇∆−1∇· is the orthogonal projector on

Im(curl) = {∇ · u = 0}, which is very common in fluid dynamics.

The analogy with the finite dimensional case is once again striking : AA+ is the

orthogonal projection on Im(A).

This operation is known in physics as the Biot-Savard law, it describes the magnetic

field induced by an electric current running through a curve (here the curve is δΓ).

4.4.3 Imposing the cohomology constraint

To make sure that η0 satisfies A⃗(η0) = A⃗(Σ), we can first compute the Biot-Savard law to

impose the boundary constraint:

η̃0 = curl(−∆−1δΓ)

and then settting:

η0 = η̃0 − A⃗(η̃0) + A⃗(Σ)
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Since A⃗ is linear and A⃗(v) = v if v is constant.

4.5 Extracting the surface from the normal field

4.5.1 Poisson Surface Reconstruction

Once the normal field of the solution is computed, we can apply a very famous algorithm

to recover the underlying surface, Poisson Surface Reconstruction, see [9].

The basic idea of the algorithm is very simple : if a surface Σ is represented by a signed

distance function (SDF) φ, its normal field can be computed as

nΣ(x) = ∇φ(x) (16)

∀x ∈ Σ, or equivalently ∀x s.t. φ(x) = 0. Hence, the idea of the surface reconstruction

algorithm is to compute a reasonable guess to find a function φ such that its gradient is the

normal field nΣ. We can then extract the recovered surface as {φ(x) = 0}.

Key idea 10. Even though Poisson Surface Reconstruction was developed to recover

a surface from an oriented point cloud (for exemple from a LIDAR scan), we use it

here to convert our solution defined on a grid to a more convenient form (a mesh).

Hence, in a way very similar to the Biot-Savard law, we aim to compute ∇+.

We start from (16):

nΣ = ∇φ

we apply the divergence on both sides, and then since ∇ ·∇ = ∆, we can then recover φ by

solving8 the following Poisson problem :

∆φ = ∇ · nΣ

4.5.2 The marching cubes

The extraction of {ϕ = 0} is done using another famous algorithm, the marching cubes, that

builds the mesh of a level-set by running through each cube of a grid. More precisely, to

extract the 0-level set of a continuous function ϕ discretized on a n3 grid, the algorithm

proceeds like this :

• look at each cell Cijk

• if all the values of ϕ at the corner of the cell Cijk do not have the same sign that

means that the level set {ϕ = 0} must run through this cell

• add the appropriate triangles so that the set of vertices {vxyz ∈ Cijk|ϕxyz < 0} and

{vxyz ∈ Cijk|ϕxyz > 0} are separated.

Up to rotations, all the possible combinations are :

for a comprehensive survey, see [10].

8we can use again the FFT to solve it really fast since the Green kernel of the Laplacian is known and
simple, namely, in 3D, ∆̂(ζ) = 1

||ζ||2
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Figure 8: The marching cubes algorithm

5 Implementation details

5.1 Discretization

First, since they aim at using the FFT, the discretization space is an n×n×n grid, we note

h = 1
n−1 the resolution. Following the founding work of discrete exterior calculus [11], the

authors discretize k-forms by their integral over k-geometric elements, for instance, 1 forms

are discretized as:

ηi,v =

∫ v+hei

v

η,

hence stored as vectors fields defined at each vertex v. And 2-forms as:

ωi,v =

∫ ∫
[v,v+hej ]×[v,v+hek]

ω,where εijk = 1

where ε is the Levi-Civita symbol, which is equivalent to taking the integral of ω on the

face based at vertex v with normal ei. Note that while 1-forms should be stored on edges

and 2-forms on faces, the fact that the grid is periodic induces that E = F = V × {1, 2, 3}
hence allowing them to store everything at the vertices to simplify computations.

Furthermore, the fact that the edges are axis-aligned boils down all discretizations to

standard finite difference techniques. For instance, to define the gradient operator D used

in (13), they simply use:

(Dϕ)v,i =
1

2h
(ϕv+hei − ϕv−hei)

which is the standard central difference scheme, of order 2 .

No further numerical analysis is provided since they only adopt the framework defined

in [11] and only use standard operators (D,∆,etc...).

5.2 Implementation provided

The authors provide an implementation in the Houdini software, that allows to render

many geometrical objects programmatically. Houdini and the code given here works in a
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way following the ”no-code” philosophy, where direct code is replaced with a succession of

nodes that allows to chain operations in a more readable and compact way.

(a) Given boundary Γ (b) Solution to (13)

(c) Extracted surface

Figure 9: The algorithm’s pipeline

By the way, playing with the initial boundary made me question the importance of the

way the boundary is parametrized. We realized that it is a critical point since : if the

multiple boundaries are not parametrized in a ”compatible” way, the algorithm does not

provide the solution! This comes primarily from the fact that the vector area changes sign

when the parametrization is reversed :

(a) Correct boundary parametrization (b) Incorrect boundary parametrization

Figure 10: Importance of boundary orientation

6 On a personal note, general thoughts on the paper

6.1 Strengths

First and foremost, the aspect of the paper I appreciate the most is the fact that they bring

geometric measure theory (GMT) concepts into the computer graphics community in a very
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elegant way. They successfully combine : mathematical rigor, computational efficiency,

and clarity of exposition. On a mathematical aspect, the true contribution here, since the

link between GMT and minimal surfaces is not new, is the use of the FFT to speed-up

computations while handling its theoretical (topological) consequences. The derivation of

the final optimization problem, using the Helmoltz-Hodge decomposition is very clever and

elegant. Finally, regarding the optimization process itself, starting the search for a minimum

from a pertinent initial guess while making it compatible with ADMM provides a very fast

minimization.

6.2 Limitations

The major flaw of the paper is the lack of details regarding the orientation of the boundary

and of the resulting surface. As demonstrated in figure 10, if the boundaries are not oriented

accordingly the minimal surface cannot be reached. Even though the authors mention the

fact that their algorithm only works for orientable surface, I think that they do not define

precisely enough the boundary Γ for example (is it a set or a parametrized curve?). To be

fair, the authors declare that their method cannot work with non-orientable surfaces but

that question should have deserved more precision.
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