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Figure 1: Given an implicit surface (top left), we generate parameterizations with multiple seeds (top middle, seeds marked with red and
green frames) and use them to apply rendering maps (top right). We can merge adjacent fields interactively, hence extending local uv-patches
into semi-global parameterizations on smooth regions (bottom left). Our method implicitly segments the surface by sharp features and follows
the geometry of the shapes, enabling the texturing of complex objects (bottom middle). Finally, since we never mesh the surface, we can still
use the modeling advantages of implicit shapes, for example, to perform topological changes in real time (bottom right).

Abstract
Implicit representations of shapes are broadly used in computer graphics since they offer many valuable properties in design,
modeling, and animation. However, their implicit and volumetric nature makes applying 2D textures fundamentally challenging.
We propose a method to compute point-wise and parallelizable semi-global parameterizations of implicit surfaces for texturing,
rendering, and modeling purposes. Our method not only defines local patches of parameterization, but also enables the merging
of multiple adjacent patches into large and spatially coherent ones that conform to the geometry. Implemented in shaders into
a sphere-tracing pipeline, our method allows users to edit the uv-fields with real-time visualization. We demonstrate how to add
rendering details (texture, normal, displacement, etc.) using our parameterization, as well as diffusing quantities on the surface
and extending modeling tools with implicit shell maps. Furthermore, the textured objects remain implicit and can still be used
in a modeling pipeline.

CCS Concepts
• Computing methodologies → Shape modeling;
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1 Introduction

Implicit surfaces are one of the most ubiquitous ways to represent
shapes on a computer. Contrary to explicit representations, like a
triangular mesh, which describes the R3-embedding of a collection
of connected triangles, implicit representation only encodes a sub-
set M ⊂R3, defined as the set of zeros of a scalar field f : R3→R,

M =
{

x ∈ R3 | f (x) = 0
}
. (1)

Note that while it is possible that M contains volumetric regions
(3D), curves (1D), or isolated points (0D), if we consider slight
perturbations to f ’s value, M is usually a surface (2D). This scalar
field f gives us a way to query the location of M. If, additionally, f
satisfies the Eikonal equation,

∥∇ f∥ ≡ 1, (2)

then f becomes a Signed Distance Field (SDF), meaning that there
exists a volumetric region Ω where ∂Ω = f−1(0) and

f (x) =

{
−d(x,∂Ω), if x ∈Ω,

d(x,∂Ω), else.
(3)

When a surface M is encoded with an SDF f , an important tech-
nique, sphere tracing [Har96], computes the intersection of a ray
and the surface by iterating

xk+1 = xk + f (xk)ℓ, (4)

where ℓ is the direction of the ray and f (xk) = d(xk,M) is the
largest “safe” (not intersecting with M) step size. If f can be evalu-
ated in parallel, a GPU implementation in shader language of Eq. 4
[JQ14] can significantly speed up ray-tracing to achieve real-time
rendering. This technique became the default rendering method for
implicit surfaces because it enables 3D geometry editing in a fully
implicit setting with real-time visualization.

We can model a scalar field f on a computer by storing either
its values on a voxelized grid or its analytic expression. For exam-
ple, we can store the values f (xi jk) = ∥xi jk− q∥− r of an SDF of
a sphere Bq(r) on the voxels xi jk of a 3D grid, or we can store the
sphere center q ∈ R3 and its radius r > 0. These two methods each
have their trade-offs. While voxelized functions are more expres-
sive and can handle freestyle edits, analytic functions enjoy a mini-
mal memory footprint and infinite resolution. In this paper, though
our method is agnostic to the type of functions (SDFs or non-SDFs)
and the storage method (voxel or analytical expression), we focus
on real-time geometry modeling and use analytic SDFs in most of
our examples.

Many well-known design tools build on implicit representations.
In constructive solid geometry (CSG), one models the intersection
of two shapes A and B by computing

fA∩B = max( fA, fB), (5)

where f• denotes the SDF of •. In inverse rendering, researchers
often use implicit representation to model arbitrary geometry
[VSJ22] because changing the surface topology can be made dif-
ferentiable by changing f ’s value.

Implicit representation enjoys many appealing features, but what

Figure 2: We can render a bunny (left) and a cylinder (right) with
color texture, normal map, and displacement in a sphere-tracing
pipeline.

are some of its drawbacks when compared to explicit represen-
tations? A mesh, for example, explicitly encodes a surface, an
object intrinsically 2D but living in 3D. One can exploit this 2-
dimensional nature to compute a 2D parameterization, for example
using CETM [SSP08] or boundary-first flattening [SC17], so there
exists a global mapping between the surface M and the uv-plane
R2. This parameterization can be used to apply additional render-
ing properties

x ∈M 7→ (u,v) ∈ R2 7→ A(u,v), (6)

whereA :R2→Q could be color (Q= [0,255]3), normal (Q= S2),
or displacement height (Q =R). Since implicit surfaces are merely
a subset in R3, one can only query the surface in a volumetric man-
ner. Without first converting the implicit surface into a mesh (via
marching cube [LC98] or dual contour [JLSW02]), one cannot eas-
ily parameterize the surface to add rendering details. This mesh-
ing step is computationally expensive and can introduce unwanted
smoothed features. Furthermore, it depletes the advantage of using
analytic SDFs for real-time modeling if the users have to gener-
ate the mesh to add details. We thus devise a fast and point-wise
method to generate semi-global uv-coordinates on implicit surfaces
for texturing purposes while avoiding meshing. By moving along
the surface M using a second-order approximation of the shape, we
build local parameterizations and provide a way to join multiple
adjacent parameterized patches together into a common coordinate
system. Built into a sphere-tracing renderer, our method runs in
real-time on analytic SDFs and allows users to edit the uv-fields
with instantaneous feedback. Finally, since we never mesh the sur-
face, the final textured object remains implicit and can be used in a
modeling pipeline, for example to perform topological operations
on the shape in real-time, to deform it, or to exploit symmetries.

We summarize our contributions into the following list:

• A fully point-wise and parallelizable local parameterization built
from an approximation of the geodesic path between the query
point and a reference point.

• Each parameterization patch is defined on a smooth region de-
limited by sharp features.
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• A smooth blending of multiple local parameterization patches
into a common coordinate system for parameterizing a larger
smooth portion of the surface. Our interpolation scheme is con-
tinuous and only blends near the interface between seeds.

• This parameterization system can be used to

– Apply textures of color, normal, and displacement maps in a
sphere-tracing rendering pipeline (see Fig. 2).

– Diffuse and interpolate scalar and vector values on the sur-
face.

– Encode a complex (possibly explicit) shape as a displacement
on a simple implicit surface.

– Morph some other implicit geometry in the three-
dimensional shell around the surface using shell maps
[PBFJ05].

• The evaluation of this system runs in parallel per pixel and can
be implemented on GPU.

2 Previous works

Purely implicit approaches

We first review techniques that directly aim at computing coordi-
nates or adding details on implicit surfaces without discretizing the
surface.

Many such techniques make heavy assumptions on the structure
of the function f . For example, analytical fields, which are struc-
tured as the skeleton of simple shapes are used to compute coordi-
nates and blending textures [TW99], add fine geometric details on
the surface from a noise defined on the surface [ZBL∗12], or from
displacement maps on shapes with canonical coordinates, such as
ellipsoids [SP91]. Another structured representation is proposed by
Arquès et al. [AMP00] where an implicit surface is defined by a
large number of blended discoid primitives. Since this representa-
tion is very dense in terms of sampling, they can encode complex
geometry and store coordinates at each seed, enabling the use of
textures.

Another approach is to define a flow from the surface to an en-
globing volume, such as a sphere, on which coordinates are known
[ZGVdF98] [TW99]. However, such a mapping process induces a
lot of distortion and is valid mostly for simple, blob-like shapes.

Decal style that works on arbitrary geometry but only locally

On the other hand, some approaches work without assuming any
structure on the surface, which can then be applied on any shape
representation, including implicit surfaces. Indeed, in the work of
De Groot et al. [DGWB∗14], the authors propose a way to define
a local coordinate system around some points in order to apply de-
cals on generic surfaces. They do so by only using the Euclidean
distance and an orientation frame carried by each point. This tech-
nique has been extended in several works, such as by using curva-
ture information to improve distance estimation [RASS16], or by
enhancing the interaction between the decals [NMBS21]. However,
despite its efficiency and simplicity, the coordinate computation is
too simple to be applied on topologically complex shapes at a large
scale, hence being mostly restricted to decals.

Can be applied to implicit surfaces but need discretization

To bypass the absence of an explicit surface, some works first dis-
cretize the shape, using contouring [LC98] [JLSW02] to compute
coordinates by applying some variations of the shortest path algo-
rithm. In the work of Pederson et al. [Ped95], the authors subdivide
the shape into parameterized patches, whose borders are geodesics.
To compute the geodesic between two points, they first compute
the shortest path on the contoured shape, which is then refined by a
curve shortening flow restrained on the implicit surface (which is a
common way to compute such curves [YZ10]). Finally, the authors
match the derivatives of the coordinates between the patches in or-
der to tile the surface. A variation of Djikstra’s algorithm is also
proposed in the work of Schmidt et al [SGW06], which also propa-
gates exponential coordinates from a seed. Such a system provides
an intuitive and controllable way to compute robust coordinates on
implicit surfaces. However, since the shape is discretized, the out-
put is not an implicit surface anymore and one loses the benefits of
such a representation.

Dense representations

When the implicit surface is stored in a voxel grid, the geom-
etry editing is simplified, and users can add fine details [EB17]
[DHM12]. For example, by defining a coordinate system via a shell
of particles, the work of Brodersen et al. [BMPB08] enables the use
of shell maps [PBFJ05] to carve or add geometric details by morph-
ing some other geometry on the surface of the shape. By fully em-
bracing such volumetric representation, the work of Tarini [Tar16]
bypasses the need of a surface by also computing and storing uv
coordinates in voxels. In a similar way, the field of differentiable
rendering may also encode shapes in such a volumetric represen-
tation [VSJ22]. However, although voxel-based approaches offer
very high accuracy, the cost of such accuracy in terms of grid reso-
lution often precludes real-time processing and control.

3 A local parameterization around a reference point

The goal of this paper is to extend what is possible when render-
ing implicit surfaces using sphere tracing. In such a pipeline, the
GPU computes, in parallel, for each pixel of the screen the intersec-
tion between its ray and the surface. For each ray-surface intersec-
tion x ∈M, we would like to query additional rendering attributes
A(u,v) (color, specularity, etc., see Sec. 5.2). We design a point-
wise method of deriving uv-coordinates that is implementable in a
GPU renderer.

In this section, we first create a local parameterization around a
single reference point p ∈M. Recall that a local parameterization
is a mapping from a neighborhood U of p to R2:

ϕp : U ⊂M→ R2

x 7→ (u,v).
(7)

We use a approximation of the exponential map (Sec. 3.1) together
with an ambient heuristic (Sec. 3.3) to approximate the geodesic
path between the query point x and the reference point p. We ex-
plain how geodesics embody local parameterization in Sec. 3.4. In
Sec. 3.6, we lay out our algorithm and provide additional imple-
mentation details.
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3.1 Local approximation of the exponential map.

3.1.1 Geodesics

Geodesics are the generalization of straight lines to a (curved) man-
ifold. A curve γ : [0,T ]→M is a geodesic if it is a critical point of
the following energy

E(γ) =
∫ T

0
||γ̇(t)||2dt. (8)

where ||.|| is the standard Euclidean norm in R3. Such a curve
is parameterized by arc length, i.e., ∥γ̇∥ ≡ 1. We can understand
geodesics as the locally shortest paths on a surface. A geodesic
path beginning with point p ∈M with an initial direction v ∈ TpM
is the critical point of E(γ) with the following initial values:{

γ
v
p(0) = p

γ̇
v
p(0) = v

||v|| .
(9)

Expp(v)

v
∥v∥

p

The exponential map Expp :
TpM→M maps any vector v to
the solution of Eq. 9 at t = ∥v∥:

Expp(v) = γ
v
p(||v||). (10)

(See inset figure.) From the
arc length parameterization, the
geodesic distance between p
and Expp(v) is exactly dM(p,Expp(v)) = ||v||.

3.1.2 First order approximation

An implicit surface M= f−1(0) is uniquely defined by the function
f ; therefore, all its geometric properties can be inferred from f and
its derivatives. For example, the gradient of f gives rise to the unit
normal of M:

n(p) =
∇ f (p)
||∇ f (p)|| . (11)

The tangent plane TpM is the orthogonal complement of n(p),

TpM = n(p)⊥ =∇ f (p)⊥. (12)

Given an initial direction v ∈ TpM, we can locally approximate the
exponential map Expp(v) à la Forward Euler method:

γ
v
p(τ) = p+ τv. (13)

However, one can check with a simple Taylor expansion of f that
Eq. 13 only stays on M up to o(τ):

f (p+ τv) = f (p)+ ⟨v,∇ f (p)⟩τ+o(τ)

= o(τ),

since f (p) = 0 and v ⊥ ∇ f (p). This first order approximation re-
quires very small time steps to keep the curve close to the surface.
Since evaluating f is the most costly part of the pipeline, this can
significantly slow down the process. Next, we proceed to describe
a second-order approximation in order to bypass this limitation.

o(τ)

o(τ2)

n(p)

p

Figure 3: Comparison of first vs second order schemes for Expp.
A second-order approximation of the level set allows one to take
larger, hence fewer, steps. The walk remains significantly closer to
the surface than with the first-order method. The dotted-lines illus-
trate the size of the error and the location of the projection.

3.1.3 Second order approximation

A second-order approximation of the exponential map on an im-
plicit surface M is a path γ

v
p such that

f (γv
p(τ)) = o(τ2). (14)

To build such γ
v
p, we must use second-order geometric quantities of

M. Let n : M→ S2 denote the Gauss map as given in Eq. 11. The
shape operator at p is defined as the differential of n,

Sp : TpM→ TpM

v 7→ Dvn(p) =
∂n
∂v

∣∣∣∣
p
.

(15)

The eigenvalues κ1,κ2 and eigenvectors v1,v2 of Sp are the prin-
cipal curvatures and principal curvature directions of M at p. For
implicit surfaces, we can compute the shape operator Sp from f
with

Sp =
(

I−n(p)n(p)T
) H f (p)
||∇ f (p)|| , (16)

where H f (p) denotes the Hessian of f at p. The shape operator
gives a local quadratic approximation of the surface M,

γ
v
p(τ) = p+ τv+

τ
2

2
⟨v,Sp(v)⟩ n(p)

= p+ τv− τ
2

2||∇ f (p)||
〈
v,H f (p)v

〉
n(p).

(17)

One can use the Taylor expansion of f at p, composed with the
above, to verify that Eq. 14 is satisfied.

Evaluating the full Hessian in Eq. 17 would be pretty expensive
(e.g. using finite difference, f needs to be evaluated 18 times!).
Luckily, we only need the term ⟨v,H f v⟩= (Dv)

2 f . The three-point
finite difference scheme,

⟨v,H f v⟩= (Dv)
2 f =

f (p−hv)−2 f (p)+ f (p+hv)
h2 +o(h2),

(18)
only requires 2 additional evaluations of f since we always need
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f (p). For highly curved surfaces or those C1 but not C2 (differen-
tiable but not twice differentiable), one can re-project the approxi-
mation of Expp(v) onto M using:

Π f (x) = x− f (x)
∇ f (x)
||∇ f (x)||2

. (19)

As shown in Fig. 3, the second order approximation permits
larger steps and, therefore, fewer evaluations are needed to move
a fixed distance T , even on irregular surface.

3.2 The log map as a local parameterization

As described previously, the exponential map Expp maps the tan-
gent plane TpM to the surface M. If we select an orthonormal basis
e1,e2 ∈ TpM, we can then map R2 to M by

R2→M

(u,v) 7→ Expp(ue1 + ve2).
(20)

In other words, given a 2D coordinate (u,v), we can use Eq. 20
to deduce the 3D point location Expp(ue1 + ve2) on M. This pro-
cess describes the inverse of our goal Eq. 7. We therefore build the
inverse of the exponential map, the logarithmic (log) map. It is de-
fined locally on a neighborhood U ⊂M near p:

Logp : U → TpM, (21)

such that Expp(Logp(x)) = x. As illustrated on Fig. 4, using the
same parameterization of TpM → R2 for the fixed orthonormal
frame e1,e2 ∈ TpM, the Log map effectively maps U to R2, which
is our goal!

Computing the inverse map is always harder than the forward
map. The log map takes a query point x ∈M and finds the velocity
v= γ̇(0)∈TpM of the geodesic γ from p= γ(0) to x= γ(T ). Unlike
the initial value problem posed in Eq. 9, here we need to solve the
optimization problem with fixed boundary values:

min
γ(0)=p,γ(T )=x

E(γ). (22)

In the following subsection, we explain how we use a heuristic to
approximate the solution to this problem.

p e1

e2

(0,0) (1,0)

(0,1)

R2 M

Expp−−−→

Logp←−−−

Figure 4: With a selected orthonormal frame e1,e2 ∈ TpM, the ex-
ponential map Expp maps a flat plane to the surface, while the log
map Logp provides each nearby point x with 2D coordinates.

x0 = x

xi

e1p

e2

θ
v

Figure 5: Following a gradient descent of the Euclidean distance
while adhering to the surface yields an approximated geodesic be-
tween x and p. We calculate the coordinates from the arc length of
the curve and its incoming angle at endpoint p with a fixed frame
e1,e2.

3.3 Approximating the log map with ambient heuristic

Large-scale approaches to computing geodesics commonly use
global methods to explore large portions of the geometry all at
once [CLPQ20]. However, we want to avoid meshing the surface
and to be able to run the queries in parallel, so we resort to locally
approximating the geodesic for each query point x.

In a fashion similar to the A⋆ search algorithm, we follow a
heuristic to guide the path. We approximate the geodesic from
x to p with a gradient flow of the Euclidean ambient distance
d(y,z) = ∥y− z∥ while adhering to the surface M:{

γ̇(t) = ΠTγ(t)M (∇d (γ(t), p))
γ(0) = x,

(23)

The gradient of Euclidean distance∇d has a closed form,

∇d(γ(t), p) =
γ(t)− p
∥γ(t)− p∥ . (24)

So does the projection operator ΠTγ(t)M on the tangent plane Tγ(t)M,

ΠTγ(t)M = I3−n(γ(t))n(γ(t))T . (25)

ΠTxi M(p− xi)

x

p

Furthermore, we can use the
exponential map defined in Eq. 17
to keep the discretized sequence
on the surface:

xi+1 = Expxi
(−τi∇M

xi d(xi, p)).
(26)

Here τi denotes the step size at
step i. Our approach doesn’t fall
into the IVP-BVP (initial value problem vs boundary value prob-
lem) dichotomy presented in [CLPQ20] since we use a local
geodesic tracing technique to approximate the geodesic between
two points.

There is no guarantee that our approximation (Eq. 26) converges
to an actual geodesic between x and p. It is also possible that our
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calculated path from x to y differs from that from y to x. However,
we only use this admittedly flawed approximation of geodesics
only to build a coordinate system. From here on, we sometimes
omit the adjective “approximated" and refer to these curves as
“geodesics."

3.4 From geodesics to coordinates

The previous subsection lets us approximate the geodesic curve γ

from x to p. Although we cannot convert the curve γ directly to
uv-coordinates in TpM, we draw inspiration from the conversion
of polar to Cartesian coordinates:

(u,v) = r (cos(θ),sin(θ)) . (27)

Indeed, here we can estimate the length r = L(γ) and an angle
θ between the direction of γ at its endpoint p and the fixed frame
e1,e2 ∈ TpM. See Fig. 5 for an illustration.

We compute L(γ) by measuring each of the N curves γi, joining
xi = γi(0) and xi+1 = γi(τi), from Eq. 26:

L(γ)≈
N−1

∑
i=0
L(γi). (28)

We then approximate each L(γi) using Simpson’s rule:

L(γ) =
∫ τ

0
∥γ̇(s)∥ds≈ τ

6

(
||γ̇(0)||+ ||γ̇

( τ

2
)
||+ ||γ̇(τ)||

)
. (29)

To estimate the incoming angle θ at p, we first calculate its unit
tangent direction at the end point p = γ(T ):

v =
γ̇(T )
∥γ̇(T )∥ . (30)

Since the frame e1,e2 ∈TpM is orthonormal, we have the following
relation:

(cos(θ),sin(θ)) =
(
⟨−v,e1⟩,⟨−v,e2⟩

)
. (31)

Finally, we compute the log map in (u,v) coordinates using:

Loguv
p (x) = L(γ)

(
⟨−v,e1⟩,⟨−v,e2⟩

)
. (32)

The curve-based parameterization has several advantages com-
pared to those using direct estimators for implicit decals
[DGWB∗14] [RASS16]. Since we walk on the surface, we obtain
a much more meaningful estimation of the geodesic distances, as
displayed in Fig. 9, and we can accumulate additional geometric
information along the curve as explained in the following subsec-
tion.

3.5 Geometric information accumulated along the curve

3.5.1 Parallel transport

Parallel transport refers to the way a tangent vector evolves when
transported along a curve γ from one point of the surface to another.
Here, we can build the mapping from the tangent plane of the seed
TpM to the one of the query points TxM.

On a classical triangular mesh [CDS10], the smallest rotation
matrix between two neighboring faces Fi and Fj gives a coherent

p xi+1
xi

Rn(xi),n(xi+1)

v

v′

x

Figure 6: We can discretize parallel transport along the curve built
by Alg. 1. We store the product of each rotation matrix Rn(xi+1),n(xi)

into one rotation matrix Rp→x. A vector v ∈ TpM is then trans-
ported to v′ ∈ TxM by v′ = Rp→xv.

discretization of the parallel transport between TFi M and TFj M.
This rotation is the same as the one that rotates the face normals
ni to n j along the dihedral angle, given by the following formula:

Rni,n j = I3 + J +
1

1+ ⟨ni,n j⟩
J2, (33)

where J is the skew-symmetric matrix such that Ju = (ni×n j)×u
for all u ∈ R3. We take inspiration from this formula and build the
parallel transport matrix from reference point p to query point x by
accumulating the rotation at each iteration between xi and xi+1:

RTpM→TxM =
n−1

∏
i=1

Rn(xi+1),n(xi). (34)

From here on, use the notation Rp→x = RTpM→TxM interchange-
ably for simplicity. We illustrate the accumulation process in Fig. 6.
This will be useful to apply normal maps in Sec. 5.2.1, to diffuse
vector quantities in Sec. 5.3, and to compute optimal frames in
Eq. 51 when merging multiple patches in Sec. 4.4.

3.5.2 Detecting sharp features

Until this point, we have built our theory on the assumption that the
function f is sufficiently smooth. However, models found in the
wild often contain sharp features where the normal is discontinu-
ous, e.g. the 90-degree edges of a box. Our geodesic tracer would
be unstable near these sharp edges and corners because there’s no
well-defined tangent plane to project the distance gradient, hence,
the uv-patch cannot cross them in a robust way. We argue that this
property does not diminish the usefulness of our method. In the
context of 3D design, sharp features often divide the shape into se-
mantically separate regions, each having their own uv island. For
example, in Fig. 1, sharp features signal different components made
of different materials in the robot.

n(xi)

xi

n(xi+1)
xi+1

Since our parameterization is based on
geodesics connecting query points x and
a reference point p, we can detect sharp
features by testing for normal discontinu-
ity along the curve:

n(xi) ·n(xi+1)< 1− ϵ2. (35)
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Here ϵ2 > 0 is the tolerance to normal changes. This test may
give out false positives, i.e., detecting sharp features if the shape
smoothly but rapidly curves. One may use different tolerance ϵ2 at
different regions to accommodate the geometry.

3.6 Implementation

We sum up our method for a patch of local parameterization around
a single reference point p in Alg. 1.

3.6.1 Limits of ambient heuristics

The gradient flow of the Euclidean distance doesn’t always produce
a valid curve between the query point x and the reference point p
on the surface. Since we do not perform a global search to find the
optimal path, the flow might get stuck in a local minimum. These
local minima are the points x such that p− x is co-linear with n(x).
However, since the function x 7→ d(x, p) is a continuous function
on M with a global minimizer p, every point in the attraction basin
of p must be able to follow the gradient flow and reach p.

3.6.2 Adaptive step size

One key ingredient in ensuring the continuity of the local parame-
terization is requiring that the algorithm takes the same number of
steps at all query points. Take the case that x and x′ are two nearby
query points. Because we run Alg. 1 on x and x′ independently, if
one uses N steps and the other uses N− 1 steps, that missing step
can introduce discontinuities in their uv-coordinates. Using a fixed
number of iterations with adaptive step size also helps evenly allo-
cate computation time for each core of the parallel computation.

To fully utilize every iteration of the N steps, we must pick the
step size τi of the gradient descent to maximize our chances of ob-
taining an almost-geodesic curve γ that reaches the reference point
p. If the step size is too large, we can deviate from the level set M
if it is highly curved; if it is too small, we might not reach the seed
before the iterations run out. We set the time steps so that each iter-
ation moves by the Euclidean distance between the current location
and the goal ∥xi− p∥, divided by the remaining number of steps:

si := ∥xi+1− xi∥=
∥xi− p∥

N− i
. (36)

To infer the step size τi required for
the above equation, we take from
Eq. 17 that xi+1 = γi(τi) = xi + τiv+
τ

2
i

2 αn for some scalar α ∈ R and
||v|| = ||n|| = 1,v ⊥ n. We then solve
∥γi(τi)− xi∥2 = s2

i for τi:

τi =

√√√√√√
1+ s2

i α2−1
α2

2

≤ si. (37)

Note when the surface is flat, H f = 0 and therefore α = 0, we
recover τi = si. When the surface M is smooth, the fact that
each query point takes the same number of steps with position-
dependent step size makes the resulting log map depend con-
tinuously on the input. When the surface is merely C1 and not

Algorithm 1: Log Map around a single reference point
Data: scalar field: F , query point x ∈M, reference point p,

frame (e1,e2) ∈ TpM2, number of iterations N,
maximum distance D, tolerance parameters ϵ1,ϵ2

Result: uv coordinates: (u,v) = (r cos(θ),r sin(θ)), parallel
transport rotation matrix RTpM→TxM

if d(x, p)> D then
return fail; // exceeds maximal distance

end
x0 = x;
r0 = 0;
R0 = I3;
// Fixed number of iterations
for i ∈ [0,N−1] do

si =
d(xi,p)
N−i ;

τi = ComputeTimeStep(si); // adaptive time
step (Sec. 3.6.2)
// Compute direction
vi = Πn⊥xi

(p− xi);

if ||vi||< ϵ1 then
return fail; // heuristic fails
(Sec. 3.6.1)

end
γi = Γ(F,xi,

vi
||vi|| ); // build geodesic

(Eq. 17)
xi+1 = γi(τi);
if ni+1 ·ni < 1− ϵ2 then

return fail; // sharp feature
(Sec. 3.5.2)

end
// Accumulate rotation from T Mxi+1 to

T Mxi

Ri+1 = RiRni+1→ni ;
ri+1 = ri +Lγi(τi);
if ri+1 +d(xi+1, p)> D then

return fail; // exceeds maximal
distance

end
end
if d(xN , p)< rmin then

r = rN +d(xN , p);
// Use xN−1− p instead of xN−1− xN for

numerical robustness
t = Πn⊥p

(xN−1− p);

return (u,v) = ( t
||t|| · re1,

t
||t|| · re2),R = RNRnp→nN

end
return fail; // exceeds maximal steps
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Figure 7: Alg. 1 can parameterize a large area with one seed on a
relatively smooth surface. However, all log maps accumulate dis-
tortion with curvature [SGW06]. With just one seed at the bunny’s
head, the parameterization gets distorted on its back (left). We pro-
pose a way to alleviate this issue with multiple patches of parame-
terization. Users may add a seed to the region where the parame-
terization of the first seed gets distorted and merge the two patches
to get a smooth semi-global parameterization (right).

C2 (differentiable but not twice-differentiable), we found that re-
projecting each xi using Eq. 19 is enough in practice.

4 Semi-global parameterization using multiple patches

The previous section describes the method to compute a local pa-
rameterization patch given a reference point p and an orthonormal
frame e1,e2 ∈ TpM. We call the tuple (p,e1,e2) ∈ M× TpM2 a
seed for a patch of parameterization. In this section, we investigate
using multiple seeds to reduce distortion (Fig. 7) and cover more
area (Fig. 8).

4.1 Finding the geodesic-nearest seed

If there are n seeds {(pi,e1i,e2i)}n
i=1, a query point x can move

towards any of the n seeds to obtain its uv-coordinates. Previous

Figure 8: Since one seed is often insufficient to parameterize a
large area of the implicit surface (left), we can place multiple seeds
to cover more area (middle). This, however, creates discontinuity
between each of the parameterization patches (middle, discontinu-
ity highlighted with a red box). We use the geodesic information
between seeds to merge the patches and generate a semi-global pa-
rameterization without discontinuity (right, no texture discontinuity
in the red box).

Figure 9: We illustrate in 2D the Euclidean Voronoï cells (top
left) and the geodesic Voronoï cells (top right) with the same seed
placement on the same geometry. parameterization using the Eu-
clidean nearest seed [DGWB∗14] [RASS16] is only valid near the
seeds and can produce erroneous results with too few seeds (bot-
tom left). We use the geodesic nearest seed and the segmentation by
sharp feature, which incorporates the geometry of the surface and
produces favorable results (bottom right) with the same few seeds
used in the bottom left.

works use the seed closest to the query point measured by the Eu-
clidean distance [DGWB∗14] [RASS16]. This strategy can incur
significant errors because a small Euclidean distance between x
and pi does not guarantee that x is semantically associated with
pi or even connected to pi on the surface (Fig. 9 left). We re-
place the Euclidean distance d(x, pi) with the geodesic distance
dM(x, pi) = L(γ) computed following Alg. 1. The Voronoï cell of
a seed pi, defined by the set of x where pi is the closest seed to
x, is the region where we compute the uv-coordinates based on
(pi,e1i,e2i). Using the geodesic closest seed implies partitioning
the surface with the geodesic Voronoï cells, which are always sim-
ply connected. As a result, our strategy produces coherent parame-
terization on implicit surfaces regardless of geometry, and we can
use much fewer seeds compared to previous works.

Since the geodesic distance is always longer than the Euclidean
distance

dM ≥ d, (38)

we can use the Euclidean distance to speed up the subroutine in
finding the geodesic-nearest seed. We first find the neuc closest
seeds w.r.t. the Euclidean distance to the query point x, sorted by
ascending order. Starting with the Euclidean closest seed, we call
Alg. 1 to compute the geodesic distance dM(x, pi) between x and
each seed pi. According to Eq. 38, if a seed pi has a larger Eu-
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Figure 10: To combine multiple uv-fields, we wish to take weighted averages of coordinates at a point x, coming from adjacent seeds (left).
Since each Log map Logpi

is expressed in its own referential, we first assign each seed pi an offset coordinate ui ∈ R2 in a common uv-
space (middle). In this common coordinate system, we can blend the coordinates at the interfaces between the seeds using compact support
interpolation (right).

clidean distance d(x, pi) than the current minimal geodesic distance
dM(x, p∗), pi would have no chance to be closer to x than the cur-
rent best seed p∗. Therefore, we can terminate the iteration early
with very few calls to Alg. 1.

4.2 Merging patches overview

Existing techniques that generate a global uv-field on the entire im-
plicit surface [SP91] [Tig01] can facilitate texture application but
suffer from singularities and significant distortion since they are de-
fined generically. On the other hand, techniques using local coor-
dinate systems are much more controllable and have low distortion
near each seed [DGWB∗14] [SGW06], but they only permit small
and localized texture patches (“decal" style). To benefit from the
best of both worlds, we propose a way to merge multiple local co-
ordinate fields into a more global one while maintaining quality and
control. Moreover, since even exact log maps [SGW06] accumulate
distortion with curvature, our method can be viewed as extending
the valid region of the log map.

To generate a more global parameterization, a natural idea is to

Figure 11: Techniques like triplanar mapping directly blend the
color, resulting in blurred texture and incoherence (left). We extend
several uv-fields into a common uv-coordinate system, enabling
structured textures on a large scale (right).

interpolate the uv-fields from different seeds:

u(x) =
∑

n
i=1 wi(x)Loguv

pi
(x)

∑
n
i=1 wi(x)

. (39)

In particular, one can use the Voronoï diagram of the seeds to guide
the interpolation. To keep our evaluation fully point-wise, real-
time, and implicit by nature, we cannot afford to compute interpo-
lation weights as in natural neighbors techniques [BU06]. There-
fore, we look to kernel-based techniques, i.e. using the distance to
each seed to calculate the interpolation weight. However, interpo-
lating uv-fields is more involved than interpolating fixed data, such
as colors (Fig. 11). Since each parameterization Loguv

pi
is centered

around (u,v) = (0,0) at its seed pi, simply taking a weighted sum
of different uv-fields will result in incoherent texture. In particu-
lar, the uv-coordinates for every seed are all the same, (0,0), even
though they are scattered at different places on the surface! To ex-
press each uv-field involved in the interpolation in a common coor-
dinate system, we assign each seed pi with an offset location ui in
a mutually agreeable manner (Fig. 10 middle). We modify Eq. 39
with uv-offsets:

u(x) =
∑

n
i=1 wi(x)(Loguv

pi
(x)+ui)

∑
n
i=1 wi(x)

. (40)

We discuss the blending weights wi in Sec. 4.3 and the uv-offsets
ui in Sec. 4.4. We illustrate the complete pipeline in Fig. 10.

In practice, we build a graph (V,E) where the vertices are the
seeds location V = {pi}n

i=1 and an edge is included Ei j ∈ E if the
user selects pi and p j for merging. Each edge is weighted by the
geodesic distance dM(pi, p j). We also attach the uv-offset ui to each
seed

(
pi,e1i,e2i)i

)
into tuples,(

pi,e1i,e2i,ui
)
∈M× (TpM)2×R2, i = 1, · · · ,n. (41)

We package these tuples together with the weighted graph into an
Atlas data structure A = ({(pi,e1i,e2i,ui)}i,E) to be sent to GPU
for rendering the textured surface. See Alg. 2 for the complete im-
plementation for computing the blended uv.
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Finally, the location of the seams of the final parameterization is
very easy to predict since it lies at the Voronoï frontier between two
seeds, i and j, that are not merged together, i.e. if (i, j) /∈ E. Note
that one could use this system on the colors between unmerged
fields to make the seams less visible.

4.3 Compactly supported weights

One could use the Gaussian kernel based on the geodesic dis-
tance between points. However, though it provides controllable and
smooth interpolation, it has poor locality, i.e., the weights remain
nonzero even if the points are far away. Since we want to avoid fre-
quent calls to Alg. 1, we prefer to blend only at the Voronoï frontier
(boundary of Voronoï cells) between two seeds. We first describe
a kernel that only blends in the narrow band of the Voronoï fron-
tier (Sec. 4.3.1). We then describe how to blend amongst more than
two seeds (Sec. 4.3.2). Finally, we share a simple test using the Eu-
clidean distance to check if a given seed pi is needed to compute
the final parameterization of the query point x (Sec. 4.3.2).

4.3.1 Approximation of the distance to the geodesic
Voronoï frontier

In a purely Euclidean setting, one can evaluate the signed distance
from a query point x to the Voronoï frontier Vi, j between two seeds
pi and p j by projecting the vector x− pi to the line connecting pi
and p j:

dEuc
Vi, j (x) =

〈
x− pi,

p j− pi

||p j− pi||

〉
−
||p j− pi||

2
. (42)

To replace the inner product structure with only length infor-
mation, we first replace ⟨x− pi, p j − pi⟩ with ||p− pi||||p j −
pi||cos(α) and use the cosine law,

cos(α) =
l2
0 + l2

1 − l2
2

2l0l1
, (43)

where l0 = d(x, pi), l1 = d(p j, pi), l2 = d(x, p j). Combining these
formulas gives:

dEuc
Vi j (x) =

||x− pi||2 + ||p j− pi||2−||x− p j||2

2||p j− pi||
−
||p j− pi||

2

=
||x− pi||2−||x− p j||2

2||p j− pi||
.

(44)

To get an approximation of the geodesic distance to the geodesic
Voronoï frontier, we replace all the Euclidean distances with the
geodesic ones:

dVi j (x)≈
dM(x, pi)

2−dM(x, p j)
2

2dM(p j, pi)
. (45)

We use this approximated distance as a weight function to blend the
uv-fields from these two seeds. Given a blending width 2σ > 0, we
define the weight using a smooth blending function ω (see Fig. 12):

wi, j(x) =


1, dVi j (x)<−σ

0, σ < dVi j (x)

ω

(
1
2 −

dVi j (x)
2σ

)
, −σ≤ dVi j (x)≤ σ.

(46)

Algorithm 2: Compute blended uv from an atlas
Data: Atlas A = ({(pi,e1i,e2i,ui)}i,E), query point x ∈M,

bandwidth σ > 0; parameters for Alg. 1: number of
steps N, maximal distance D > 0, tolerance ϵ1,ϵ2

Result: Blended coordinates: u(x) ∈ R2

{pi1 , · · · , pin} = SortSeed(x,A); // sorted in
ascending ∥x− pik∥

L1 = LogMap(x, pi1 ,N,D,ϵ1,ϵ2); // Alg. 1
L∗ = L1;
i∗ = i1;
d∗

M = ∥L1∥; // +∞ if Alg. 1 failed
// Find the geodesic nearest seed pi∗

for k ∈ [2,n] do
if ||x− pik || ≤ d∗

M then
Lk = LogMap(x, pik ,N,d∗

M ,ϵ1,ϵ2);
if ∥Lk∥ ≤ d∗

M then
i∗ = ik ; // current best index
d∗

M = ∥Lk∥ ; // current geodesic
distance

L∗ = Lk ; // current uv

end
end

end
if |Neighbors(E, i∗)|= 0 then

// No blending required
return L∗+ui∗ ; // offseted
uv-coordinates

end
else

// Compactly supported blending
L = (0,0);
wi∗ = 1;
W = 0;
for j ∈ Neighbors(E, i∗) do

d j,i∗ = dM(p j, pi∗) ; // edge weight of
e ji∗∈E

if (d∗
M)2 +2σd j,i∗ ≥ ||x− p j||2 then
// passes test from Sec. 4.3.3
L j = LogMap(x, p j,N,d∗

M +2σ);
wi∗, j = w(d∗

M ,∥L j∥,d j,i∗); // blending
weight by Eq. 46

wi∗ = min(wi∗ ,wi∗, j); // Eq. 47
w j,i∗ = 1−wi∗, j; // Eq. 48
// Numerator of Eq. 40
L = L+(w j,i∗)(L j +u j);
// Denominator of Eq. 40
W =W +w j,i∗ ;

end
end
return L+wi∗L∗

W+wi∗
;

end
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Figure 12: Blending weight wi, j between two seeds pi, p j (top) and
blending weight wi = min j,ei j∈E wi, j in relation to all surrounding
seeds (bottom). The final weight wi is continuous, compactly sup-
ported, and only takes values other than 0 or 1 on a narrow band
near the Voronoï frontiers between seeds.

To be more precise, we use ω(t) = 3t2 − 2t3, but any smooth
function with ω(0) = 0,ω(1) = 1 could work. In practice, we set
σ = 1

3 minei j∈E dM(pi, p j) for all seed pairs. Intuitively, wi, j is the
smoothed indicator function of the Voronoï half-space Hi, j = {x ∈
M | dM(x, pi)< dM(x, p j)}.

4.3.2 Combining weights from multiple seeds

If a query point x falls in the blending area of more than two seeds,
we need a weight wi(x) for each of these relevant seeds pi. Since
the Voronoï cell Vi is the intersection of all the Voronoï half-spaces
Vi, j, we take inspiration from min(1A,1B) = 1A∩B, where 1A is the
indicatrix function of A, and propose the following weight function:

wi(x) = min
j : ei j∈E

wi, j(x), (47)

We plot the graph of this function in Fig. 12 (bottom). This for-
mula is continuous and only depends on distances to nearby seeds
selected for blending. Furthermore, to implement things efficiently
in shaders, if pi is the closest seed to x, we skip Eq. 47 for other
seeds p j and use the follow approximation:

w j(x)≈ w j,i(x) = 1−wi, j(x). (48)

This assumption makes the evaluation linear in the number of
seeds to blend (no need to compute w j1, j2 ) and prevents caching.
This assumption might not hold at the intersection of multiple
Voronoï frontiers, but we found the discontinuity barely visible in
all of our examples. The final blending then follows Eq. 40 using
these weights.

4.3.3 A cheap test to avoid unnecessary computations

Suppose pi is the closest seed to the query point x. If wi, j(x) = 1
for a neighbor seed p j, ei j ∈ E, we would not need to compute
Loguv

p j
(x) since it will not influence the final uv at x. This happens

when dVi j (x) < −σ, i.e. x is sufficiently far away from to p j. We
can use the Euclidean distance and Eq. 45 to make a cheap test:

wi, j(x) = 1 ⇐⇒
dM(x, pi)

2−dM(x, p j)
2

2dM(pi, p j)
<−σ

⇐⇒ dM(x, pi)
2 +2σdM(pi, p j)< dM(x, p j)

2.

(49)

Since ||x− p j||2 ≤ dM(x, p j)
2, we can test for the sufficient condi-

tion

dM(x, pi)
2 +2σdM(pi, p j)< ||x− p j||2, (50)

which saves us a call to Alg. 1 to compute dM(x, p j) when this
condition is met.

4.4 Optimal frames and uv-offsets

Even on a flat plane, two seeds with inconsistent frames (e1,e2) ̸=
(e′1,e

′
2) can cause the merged parameterization to have severe dis-

tortion. We therefore optimize the frame placement and uv-offsets
together to minimize distortion. We let the user specify the posi-
tion of the seeds {pi}n

i=1 together with the blending graph E that
indicates what seeds should be blended.

The distortion of a parameterization can be understood as a mea-
surement of how it differs from an isometry (a locally rigid map).
In other words, we will measure how the parametrized surface be-
haves differently from the uv-plane. We start by observing that, on
a flat plane, parallel transport is always the identity map Rx→y = I3.
Since we restrict our attention to ortho-normal frames, given e1, we
can uniquely determine e2 by a 90° rotation on the tangent plane,
using the formula e2 = n× e1. We introduce the optimization vari-
ables ti ∈ R3 for the frame vector e1 at each seed. To penalize
distortion, we select the optimal frames by minimizing a simple
Dirichlet energy on the blending graph A, weighted by the inverse
squared geodesic distance to favor interactions with closest neigh-
bors:

Eframe
(
{ti}n

i=1
)
= ∑

ei j∈E

||Ri→ jti− t j||2

dM(pi, p j)2 . (51)

Here we use Ri→ j = Rpi→p j = RTpi M→Tp j M to simplify the nota-
tion. Since this energy is invariant by global rotations, we fix one
frame t1 for one seed p1.

ti
t j

Ri→ jti

||Ri→ jti− t j||2
If M is a flat plane, the

global minimizer of the energy
would be constant field ti = t, i=
1, · · · ,n and Eframe = 0. Once
the optimal {ti}n

i=1 are com-
puted, we set e1i by projecting
ti to Tpi M and normalizing it.
When M is curved, the optimal
frame field will change as little
as possible between two neighboring seeds. This energy is similar
to the one used in the work of Knöppel et al. [KCPS13], except that
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we apply it to a very small graph A and we fix one frame instead of
finding the smallest energy eigenvector.

Once we computed the frames, we then use Alg. 1 to compute
the uv-coordinates in reference to all neighboring seeds that require
blending {Loguv

pi
(p j)}ei j∈E . Again, if M is flat, the uv-offsets ui are

trivial:

Logp j
(pi) = ui−u j. (52)

We follow the same spirit and select the uv-offsets that minimize
deviation from the above equation:

Eoffset
(
{ui}n

i=1
)
= ∑

ei j∈E

||ui−u j−Logp j
(pi)||2

dM(pi, p j)2 . (53)

Similarly, we fix the uv-offset u0 = (0,0) for one seed p0 to remove
redundant degrees of freedom.

Both energies Eframe and Eoffset are quadratic and can be mini-
mized by solving a linear system. The corresponding matrices are
standard graph Laplacians, except that the frame energy matrix is
defined by block where the parallel transport matrices are stored in
the cross terms:

L∇
i j =−

Ri→ j

dM(pi, p j)2 , (54)

in a fashion similar to the discrete connection Laplacians
[KCPS13].

It is important to note that the main advantage of our method re-
sides in the fact that the linear systems are of size proportional to
the number of seeds in the blending graph, a small number in prac-
tice. In our experience, we never needed more than 10 seeds per
patch, whereas linear systems used to parameterize meshes are of-
ten applied on meshes with several thousands of vertices. We need
to update the frames and uv-offsets if the user makes any change to
the implicit surface, moves a seed, or changes the blending graph,
but the systems’ size makes them instantaneously solvable. Hence,
the editing of the merged uv-field is also real-time!

4.5 Detecting topological obstruction

By definition, there exists no continuous and global mapping be-
tween geometries of different topologies. For example, we cannot
map a cylinder to a plane without cutting the cylinder first. This is
why placing three seeds on a cylinder and merging their uv-fields

Figure 13: The parameterization merging also solves some issues
of the Euclidean heuristic: even if each local uv-field cannot cross
the hole in the center (left), merging parameterizations from four
seeds allows us to parameterize around it (right).

!!
p1

p2

p3

u1 u2 u3

⟨Logp3
(p1),u1−u3⟩< 0

Logp3
(p1)> 0

Figure 14: In 1D, a circle cannot be parametrized by a straight
line without inversion (top left, top middle). This is why a cylinder
cannot be parametrized by a flat plane of texture (top right) without
texture inversion. We detect this inversion between seeds and sug-
gest a cut at their Voronoï frontier (bottom row).

would not yield a valid global mapping. A seam must exist between
at least two seeds. We want to detect such topological obstructions
when the user inputs the merging graph so we can alert them that
they are about to create an incoherent uv-field (See Fig. 14). Even
though we avoid global operations to ensure a real-time pipeline,
we can reliably detect uv defects caused by topology by checking
if the global uv (Eq. 40) has a negative Jacobian, i.e. det(J) < 0. It
turns out we only need to check for〈

Logpi
(p j),u j−ui

〉
< 0, (55)

for each blending edge Ei j ∈ E after computing the uv-offsets.

5 Applications

5.1 Remaining in a fully implicit setting

Why remain in implicit (point-wise) settings when one could just
convert to meshes and parameterize them [SGW06] [Ped95]? We
recount the advantages of remaining in a fully implicit setting First,
the instantaneous computation per pixel per frame allows users to
modify any parameter of our method or of the underlying model
and get immediate feedback. This includes parameters of Alg. 1,
seed placement, merging graph, etc... Artists can have the highest
level of control during the design process. Another advantage is
that the output remains implicit, so one could use our method at
any node of a CSG construction tree to build independent textured
objects before combining them. One can also perform topological
changes on textured shapes, which is difficult on meshes (Fig. 18
right). Finally, while a high-resolution mesh is required for defor-
mation, our method can generate parameterization on implicit sur-
faces warped by ω : R3→R3 [SJNJ19] with no additional cost. In-
deed, one can first texture a shape M = { f = 0} in a rest pose, then,
when rendering the deformed shape ω(M) = { f ◦ω

−1 = 0} with
sphere-tracing, when an intersection x is found, i.e., f (ω−1(x)) =
0, Alg. Eq. 2 can be called on the function f directly but queried at
the point ω

−1(x). In this way, as illustrated on Fig. 15, the walk
Eq. 23 is performed on the rest pose while the uv appropriately fol-
lows the shape from M to ω(M). In a similar fashion, if an object is
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ω

Figure 15: When rendering an implicit shape deformed by a warp-
ing operator ω, one can compute the uv-coordinates on the rest
pose (left) and transfer the texture to the deformed pose (right). A
highly deformed mesh would show rough edges where the resolu-
tion is not high enough, while implicit surfaces can fully preserve
their geometry.

symmetric, for example w.r.t. the yz-plane, one can symmetrize the
texturing by querying the uv at (|x|,y,z), hence dividing the number
of required seeds by 2.

5.2 Rendering details on implicit surfaces

In this section, we review several ways to use Implicit UV to add
details on implicit surfaces. Applying color texture is straightfor-
ward. Given a texture pictureA : R2→ [0,255]3, the color at query
point x ∈M is computed by

x 7→ u(x) 7→ A(u(x)). (56)

To apply normal and displacement maps, we utilize the parallel
transport from Sec. 3.5.1.

5.2.1 Normal maps

Recall that normal maps N : R2 7→ S2 are textures that contain three
channels (n1,n2,n3) consisting of the 3D coordinates of the mate-
rial’s normal vector at each point of the texture. They capture sub-
resolution details that may change how light reflects off the surface.
Normal maps were previously only available to meshes and other
explicit representations due to their requirement for parameteriza-
tions. We aim to extend them to implicit surfaces rendered with
sphere-tracing. Since normals are vectors, they are stored in coor-
dinates (n1,n2,n3) with a fixed basis {t,b,n}. At a given location
x on a surface with the local tangent vector t(x), bi-tangent vector
b(x), and normal vector n(x), the normal map augments the render-
ing normal into

ñ(x) = n1t(x)+n2b(x)+n3n(x). (57)

On meshes, the standard procedure uses the uv-coordinates on a
triangle to estimate the basis t(x) and b(x) and uses the triangle
normal for n(x). The frame {t(x),b(x),n(x)} is stored in a TBN
matrix and

ñ(x) = TBN(x)N(u,v). (58)

On implicit surfaces, the tangent frame ti and normal ni at seed
pi are a part of the Atlas data structure. Therefore, we transport this
frame from the nearest seed pi to the query point x to obtain the
rendering normal:

ñ(x) = Rpi→xTBNiN(u(x)). (59)

5.2.2 Displacement maps

When f is an SDF, we can also use our method to add high fre-
quency details by modifying the distance field query. Unlike most
common methods for implicit surfaces, our method does not in-
volve warping and is suited for structured displacement maps.

The idea is very simple: we want to displace the surface M, in the
normal direction n(x) by an amount h(x). The problem is loading
the height map h : R2→ R from a 2D image on query points on a
curved geometry x ∈M⊂ R3.

To illustrate the process, observe that the graph of a function
h : R2→ R, M = {(x,y,z) | z = h(x,y)} can be seen as the 0-level
set of a function fh : R3→ R by

fh(x,y,z) = z−h(x,y). (60)

The above can also be seen as displacing the (x,y) plane Pxy =
{(x,y,z) | z = 0} by h in its normal direction ez. The (undisplaced)
signed distance function to Pxy is d(x,y,z) = z to Px,y, the parame-
terization of Pxy is

u : Pxy→ R2

(x,y,0) 7→ (x,y).
(61)

Considering the projection to Pxy, (x,y) = Π(x,y,z), we can rewrite
Eq. 60 as:

fh(x,y,z) = d(x,y,z)− (h◦u◦Π)(x,y,z). (62)

We can directly generalize Eq. 62 to curved surfaces defined by
SDFs. Given an SDF f : R3 → R, our parameterization system
u(x), and a height map h : R2→ R, the modified SDF is

fh(ξ) = f (ξ)−h◦u◦Π f (ξ), (63)

where the projection Π f can be computed by:

Π f (ξ) = ξ− f (ξ)∇ f (ξ), (64)

when ξ is close to the surface M = f−1(0). We demonstrate this
computation in 2D in Fig. 16.

To accelerate the computation, we simplify the function fh away
from the ϵ-shell of the original surface by

fh(ξ)≈

{
f (ξ)− ϵ if | f (ξ)|> ϵτ

f (ξ)− (h◦u◦Π f )(ξ) else,
(65)

for some multiplier τ > 1.
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Zanni et al. had a similar expres-
sion in [ZBL∗12], except they only
considered noise functions defined on
the surface instead of the height map
term h ◦ u. Sclaroff et al. also had an
alternative formulation for displace-
ment using warping [SP91]. Com-
pared to previous works, our formula-
tion generalizes more easily to other
codimensions since it does not re-
quire normals on the shape. For ex-
ample, as displayed in the inset, applying this displacement to the
SDF of a 1D object (here a line) yields the surface of revolution.

Approximating normals from displacement

When no normal map is precomputed, we can still avoid using finite
difference schemes on fh to compute the normal of the displaced
SDF.

We start from the fact that the vector ∇ f (x) can be represented
from any ortho-normal basis {e′1(x),e′2(x),e′3(x)}:

∇ f (x) =
3

∑
i=1

De′i f (x)e′i(x). (66)

Similar to Sec. 5.2.1, we use the parallel-transported frame e′1 =
Rpi→xe1,e

′
2 = Rpi→xe2 from the nearest seed (pi,(e1,e2)i) and

the normal e′3 = n f (x) for this ortho-normal basis. We know
Dn(x) fh(x) = 1 because Eq. 63 and DnΠ f = 0 and Dn f (x) = 1 as f
is an SDF. The true derivatives w.r.t. e′1(x),e

′
2(x) need to consider

the change of the frame e′1(x),e
′
2(x), but we ignore it by assuming

that the variations from the height map h dominates the derivatives.
We thus obtain, for ξ ∈ f−1

h (0) on the height-displaced surface and
x = Π f (ξ) ∈ f−1(0),

∇ fh(ξ)≈∇ fh(x)≈∇ f (x)+ e′1∂1h(u(x))+ e′2∂2h(u(x)). (67)

We approximate the partial derivatives ∂1h,∂2h using finite differ-
ence schemes on R2. Finally, we normalize ∇ fh to obtain the unit
normal vector.

x

p
Logp

Π f (x)

h

Figure 16: In order to apply a displacement in the normal direction
of a signed distance field (left), we first project the query point x
onto the surface Π f (x), then compute the uv (here with one seed p)
then subtract the height at said uv (right).

It’s worth noting that while this approximation is acceptable for
visualization, it cannot provide reliable bounds for the Lipschitz
constant maxξ∈R3 ∥∇ fh(ξ)∥ of the displaced SDF fh. Computing
the exact Lipschitz bound would involve knowing the curvature
of the surface and parameterization distortion a priori. We cannot
derive these pieces of information from our point-wise and seed-
placement-dependent parameterization easily. However, we found
that using a multiple of the standard Lipschitz constant used for
height maps [GGP∗15]

λh = max
x∈R2

√
1+ ||∇h(x)||2, (68)

is usually enough in practice.

5.3 Interpolation and diffusion of scalar and vector
quantities

One can use our fast estimate of geodesics and parallel transport to
diffuse scalar or vector quantities. This can be used for painting /
designing textures, for example.

Diffusion

Diffusion of quantities {ai}N
i=1 from N point sources {pi}N

i=1 is
often solved with the heat equation:{

∂tu(x, t) = ∆u(x, t), t > 0
u(x,0) = g(x), t = 0,

(69)

where the initial value is the Dirac-delta of the quantities to be
diffused,

g(x) =
N

∑
i=1

aiδpi(x). (70)

The usual way to solve this problem on a meshed surface is to
discretize the Laplacian ∆ (e.g. using the cotan Laplacian) and then
perform a time integration. Of course, here we want to avoid mesh-
ing the surface and solving the global problem.

We can mimic the solution to the heat equation by exploiting
the geodesic distance between the source points and a query point
x ∈ M. The fundamental solution to the heat equation is the heat
kernel,

K(x, t) =
1

4πt
exp

(
−||x||2

4t

)
. (71)

By linearity, the solution to Eq. 69 is then u(x, t) =∑i K(x− pi, t)ai.
We substitute ∥ ·∥ in the heat kernel with the geodesic distance and
approximate diffusion on a curved surface M by

u(x, t)≈
N

∑
i=1

1
4πt

exp

(
−dM(x, pi)

2

4t

)
ai (72)

Interpolation

In a similar fashion, we can use kernel methods to interpolate val-
ues instead of diffusing them. For example, one can use a Gaussian
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Figure 17: Tangent vector field interpolation on a metaball surface
by kernel methods using the approximated geodesic distance.

kernel,

uσ(x) =
∑

N
i=1 exp

(
−dM(x, pi)

2
σ
−1
)

ai

∑
N
i=1 exp

(
−dM(x, pi)2σ−1

) , (73)

to interpolate the data {ai}.

Diffusion on tangent spaces

We can use Eq. 72 to diffuse R3-vectors, but the result wouldn’t
be a field of tangent vectors even if the inputs are (vi ∈ Tpi M, i =
1, · · · ,N). Therefore, one must use parallel transport to first bring
all the vectors vi ∈ Tpi M to the tangent space TxM at the query
point x. We use the R matrices built by Alg. 1 for our point-wise
interpolator:

vσ(x) =
∑

N
i=1 exp

(
−dM(x, pi)

2
σ
−1
)

Rpi→x(vi)

∑
N
i=1 exp

(
−dM(x, pi)2σ−1

) . (74)

The result of this interpolator is displayed in Fig. 17.

5.4 Encoding complex geometries as displacement maps of
simple implicit surfaces

The displacement map presented in Eq. 65 can be used to add local
geometric details on an implicit surface. However, one could also
use it to encode the entire shape as a deformation of a simple one,
as displayed on Fig. 18. This approach appears to have many ad-
vantages since the complexity of the uv computation is proportional
to the complexity of the shape we walk on. For simple shapes like
spheres, the displacement computation is almost free. Of course,
one direct limitation is that the target shape T must belong to the
set of shapes Φn(B) that are a deformation in the normal direction
of the base shape B, i.e.:

Φn(B) = {S ∈ Σ
2(R3), s.t. ,∃h : B→ R+,S = B+hnB}, (75)

Figure 18: Conversion of a textured mesh into an implicit shape as
a displacement of a sphere (middle). One can then trivially apply
standard implicit modeling operators, here a time-dependant twist
and a subtraction by a cylinder (right).

where Σ
2(R3) is the set of all 2-manifolds of R3 and B+ hnB =

{x+h(x)nB(x),x ∈ B}. For example, when B = S2 is a sphere cen-
tered at the origin, Φn(S2) is the set of radial heights. For applica-
tions like character animation, this limitation is not that restrictive,
since the head could be a deformed sphere and the arms and legs de-
formed cylinders. The conversion process is straightforward since
it only requires computing ray intersection queries from a sample
of B to T and then storing the ray’s length in the height map at the
uv computed by Alg. 1. The conversion process is parallel and can
be made almost instantaneous with a BVH structure when T is a
mesh. Note that one can also capture the normals and the colors of
the shape T in other maps. The resulting shape can then be rendered
in real-time in a sphere-tracing pipeline while benefiting from the
modeling possibilities offered by implicit approaches, such as ani-
mation or topological changes. This could be an interesting way to
encode shapes since it benefits from the advantages of both explicit
and implicit representations while being efficient, controllable, and
lightweight without training neural networks.

5.5 Implicit shell maps

Getting access to uv-coordinates on a surface enables querying 2D
data, but one can also use them to define a 3D coordinate system
that follows the geometry of said surface. Such a coordinate system
is known as a shell map [PBFJ05], and it is defined on an offset of
the original surface, a shell space. An ϵ-shell space is defined as :

Mϵ = {x ∈ R3 s.t. d(x,M)≤ ϵ}. (76)

We exploit the fact that, when M is the 0 iso-surface of
a signed distance function f , such an offset is trivially de-
fined as Mϵ = {−ϵ ≤ f ≤ ϵ}. In such a shell, we im-
plicitly define a shell map from a 2D coordinate system
on M, x ∈ M 7→ (u(x),v(x)) ∈ R2 in the following way:
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Figure 19: A large number of bunnies can by instantiated on a
cylinder by using a modular operator on the computed uv (left). A
tangent vector field (here, the gradient of a scalar field) is visual-
ized by placing 3D arrows and using a modular operator on the uv
for the duplication (right).

ϵ

x

y

uA(Π f (x))f (x)

Sϵ(x)

x1,x2

x3

Sϵ : Mϵ→ R2× [−1,1]

x 7→

u(Π f (x))
v(Π f (x))

f (x)

ϵ−1

(77)

As an application, one can
copy the geometry induced
by another implicit func-
tion g in the shell-space, by
defining a new function f ϵg as:

f g
ϵ (x) = min( f (x),ϵg(Sϵ(x)) (78)

Defining shell maps on implicit representations has been explored.
In [BMPB08], the uvs and the shell coordinates are defined using
a cage of particles placed on the surface. However, since the sur-
face is represented by voxel grids, their method is computationally
heavy and not suited for real-time processing and evolving geome-
tries. Our method remains fully implicit. Therefore, we can directly
use the above embedding by using our Atlas system in a sphere-
tracing pipeline as displayed in Fig. 19.

Performance

The performance of our pipeline is highly dependent on all of the
following factors:

• Geometry of the surface M = f−1(0),
• Evaluation complexity of f ,
• Screen resolution,
• Distance between camera and M,
• Number of steps N, number of seeds n, seed placement, number

of blending pairs |E|, blending width σ,

We implemented our method in Windows and ran all our experi-
ments on a laptop with an RTX 4080 laptop GPU on a Full HD

screen. In our experience, most color-textured (including normal
and roughness maps) examples achieved more than 40 frames per
second, including the blue alien toy (Fig. 1 bottom left), bunny
(Fig. 7), and torus (Fig. 8). Even for models as complex as the
robot in Fig. 1 (top row), which consists of 42 seeds and 9 blend-
ing pairs, the fully color-textured visualization still reaches 25 fps.
After adding displacement maps, the performance of rendering the
column (Fig. 2 right) dropped from 60 fps to 40 fps and the bunny
(Fig. 2 left) to 10 fps, though the sphere-displaced-to-head model
(Fig. 18) remained at 60 fps.

6 Limitations and Future works

In this paper, we propose a tool to perform implicit queries of ex-
plicit data. We use an ambient space heuristic to compute an ap-
proximation of the geodesic between two points and use it to derive
the 2D coordinates in a point-wise manner. Our method enables one
to apply additional details using texture mapping while still bene-
fiting from the modeling advantages of implicit surfaces.

The limitations of our method
mainly stem from our heuristical ap-
proximation of the log map. Since no
global shortest path computation is
performed, the gradient descent might get stuck in local minima
when the geometry has a lot of concavities. While the merging sys-
tem can help to overcome such locality, as displayed in Fig. 13, the
segmentation imposed by the sharp edges remains. For example, as
displayed on the inset, narrow regions delimited by sharp features
may require many seeds for full coverage.

The ambient heuristic and the point-wise nature of our method
can also affect the merging of uv-fields. In the scenario where two
seeds pi, p j are selected for merging, if a query point x can reach
one but not the other, even though we can compute the geodesic be-
tween pi and p j, we still cannot evaluate the merged uv-coordinates
for x.

Since the method is fully point-
wise, complete spatial coherence is
hard to guarantee. For example, the
sharp feature detection might not give
spatially coherent results when the
number of steps N for Alg. 1 is too
low. As displayed in the inset, for
ϵ2 = 0.015, the jump between the two
parts of the head is too small to be de-
tected by some points for N < 14, but
is uniformly detected when N ≥ 14.

While the performance of render-
ing a fully textured model remains
real-time on most shapes, displacement mapping (Sec. 5.2.2) and
implicit shell maps (Sec. 5.5) are often slower. These two opera-
tions are highly dependent on the complexity of the base SDF be-
cause they involve recomputing the UV at each sphere-tracing iter-
ation in the shell. Therefore, complex SDFs might not be rendered
in real-time when displaced. Having a way to start the computation
of a coordinate from the one of the previous iterations could greatly
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speed up the process. Using accelerating structures on the seeds and
multi-scale rendering could also greatly improve the performance.

The interactivity granted by the implicit nature of our method
allows one to place seeds and modify the uv-fields easily. An inter-
esting future work could be the automatic placement of the seeds
and the generation of the merging graph, for example using a vari-
ational approach.

Finally, the displacement of a simple shape into a more complex
one (Sec. 5.4) appears to be a promising representation of shapes,
falling in the intersection of the implicit and explicit categories.
Fitting a complex geometry into a simple base SDF, possibly using
a small neural network [CB24], with a height map using our method
could potentially express a wide range of shapes.
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